Polyamine depletion attenuates isoproterenol-induced hypertrophy and endoplasmic reticulum stress in cardiomyocytes.

نویسندگان

  • Yan Lin
  • Xiaojie Zhang
  • Lina Wang
  • Yajun Zhao
  • Hongzhu Li
  • Wei Xiao
  • Changqing Xu
  • Jicheng Liu
چکیده

BACKGROUND/AIM Polyamines (putrescine, spermidine and spermine) play an essential role in cell growth, differentiation and apoptosis. Hypertrophy is accompanied by an increase in polyamine synthesis and endoplasmic reticulum stress (ERS) in cardiomyocytes. The present study was undertaken to elucidate the molecular interactions between polyamines, ERS and cardiac hypertrophy. METHODS Myocardial hypertrophy was simulated by incubating cultured neonatal rat cardiomyocytes in 100 nM isoproterenol (ISO). Polyamine deletion was achieved using 0.5 mM difluoromethylornithine (DFMO). Hypertrophy was estimated using cell surface area measurements, total protein concentrations and atrial natriuretic peptide (ANP) gene expression. Apoptosis was measured using flow cytometry and transmission electron microscopy. Expression of ornithine decarboxylase (ODC) and spermidine/spermine N1-acetyltransferase (SSAT) were analyzed via real-time PCR and Western blotting. Protein expression of ERS and apoptosis factors were analyzed using Western blotting. RESULTS DFMO (0.5 mM and 2 mM) treatments significantly attenuated hypertrophy and apoptosis induced by ISO in cardiomyocytes. DFMO also decreased lactate dehydrogenase (LDH) and malondialdehyde (MDA) level in the culture medium. In addition, DFMO (0.5 mM) down regulated the expression of ODC, glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), cleaved caspase-12, and Bax and up regulated the expression of SSAT and Bcl-2. Finally, these changes were partly reversed by the addition of exogenous putrescine (0.5 mM). CONCLUSION The data presented here suggest that polyamine depletion could inhibit cardiac hypertrophy and apoptosis, which is closely related to the ERS pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endoplasmic Reticulum Stress is Involved in DFMO Attenuating Isoproterenol-Induced Cardiac Hypertrophy in Rats.

BACKGROUND/AIMS Studies performed in experimental animals have shown that polyamines contribute to several physiological and pathological processes, including cardiac hypertrophy. This involves an increase in ornithine decarboxylase (ODC) activity and intracellular polyamines associated with regulation of gene expression. Difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, has att...

متن کامل

Inhibition of Cardiomyocytes Hypertrophy by Resveratrol Is Associated with Amelioration of Endoplasmic Reticulum Stress.

BACKGROUND/AIMS Resveratrol (Res), a polyphenol antioxidant found in red wine, has been shown to play a cardioprotective role. This study was undertaken to investigate whether Res can protect the heart suffering from hypertrophy injuries induced by isoproterenol (ISO), and whether the protective effect is mediated by endoplasmic reticulum (ER) stress. METHODS Cardiomyocytes were randomly assi...

متن کامل

Zanthoxylum Alatum Attenuates Chronic Restraint Stress Adverse Behavioral Effects Via the Mitigation of Oxidative Stress and Modulating the Expression of Genes Involved in Endoplasmic Reticulum Stress in Mice

Introduction: The functions of the endoplasmic reticulum (ER) are important, particularly in the proteins’ synthesis, folding, modification, and transport. Based on traditional medicine and our previous studies on Zanthoxylum alatum in lipopolysaccharide-induced depressive behavior and scopolamine-induced impaired memory, the present study explored the role of hydroalcoholic extract of Z. alatu...

متن کامل

CYP2J2-Derived Epoxyeicosatrienoic Acids Suppress Endoplasmic Reticulum Stress in Heart Failure s

Prolonged endoplasmic reticulum (ER) stress causes apoptosis and is associated with heart failure. Whether CYP2J2 and its arachidonic acid metabolites [epoxyeicosatrienoic acids (EETs)] have a protective influence on ER stress and heart failure has not been studied. Assays of myocardial samples from patients with end-stage heart failure showed evidence of ER stress. Chronic infusion of isoprote...

متن کامل

CYP2J2-derived epoxyeicosatrienoic acids suppress endoplasmic reticulum stress in heart failure.

Prolonged endoplasmic reticulum (ER) stress causes apoptosis and is associated with heart failure. Whether CYP2J2 and its arachidonic acid metabolites [epoxyeicosatrienoic acids (EETs)] have a protective influence on ER stress and heart failure has not been studied. Assays of myocardial samples from patients with end-stage heart failure showed evidence of ER stress. Chronic infusion of isoprote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 2014